Subchondral bone osteoblasts induce phenotypic changes in human osteoarthritic chondrocytes

Christelle Sanchez¹, Michelle A. Deberg¹, Nathalie Piccardi², Philippe Msika², Jean-Yves L. Reginster¹ and Yves E. Henrotin¹

¹ Bone and Cartilage Research Unit, Liège, Belgium ² Laboratoires Expanscience, Epernon, France

Introduction. Previously, we have demonstrated that osteoblasts from the sclerotic subchondral bone express a particular phentoype characterized by an overproduction of IL-6, TGF- β 1, ALP and OC but similar amount of IL-1 β than non sclerotic osteoblasts.

Objective. To determine the influence of osteoarthritic (OA) subchondral osteoblasts on the phenotype of human chondrocytes.

Methods. Human chondrocytes were isolated from OA cartilage and cultured in alginate beads for 4 days in the absence or in the presence of human OA subchondral osteoblasts in monolayer. Sox-9, type I, II and X collagen (COL1, COL2, COL10), osteoblasts stimulating factor (OSF)-1, parathyroid hormone related peptide (PTHrP) and its receptor (PTHR), and bone alkaline phosphatase (ALP) mRNA levels in chondrocytes were quantified by real time polymerase chain reaction.

Results. In co-culture with subchondral osteoblasts from sclerotic or non sclerotic zones, chondrocytes expressed significantly less sox-9 and COL2 mRNA compared to chondrocytes cultured alone. The decrease of Sox-9 and COL2 gene expression was significantly more pronounced in the presence of sclerotic (SC) than in the presence of non sclerotic (N) subchondral osteoblasts (SC vs N p < 0.001). OSF-1 mRNA level in chondrocyte was increased by both N and SC osteoblasts, but to a larger extent by SC osteoblasts (SC vs N p < 0.001). PTHrP gene expression by chondrocytes was 17-fold increased by N osteoblasts but 4-fold inhibited by SC osteoblasts. SC, but not N osteoblasts, induced a significant decrease of PTH-R gene expression. In our experimental conditions, chondrocytes did not express COL1, COL10 or ALP, even after four days of co-culture with osteoblasts.

Figure 1: GADPH-normalized COL2, SOX9, PTHrP, PTH-R and OSF-1 gene expression by chondrocytes cultured 4 days with or without osteoblasts from non sclerotic (N) or sclerotic (SC) subchondral bone zones or normal skin fibroblasts. Results are means of 3 co-culture experiments each realised in quadruplicate +/- SEM. * p<0.05 and *** p<0.001 between co-culture and mono-culture experiments, ### p<0.001 between N and SC osteoblasts,.

Conclusions. In co-culture with OA subchondral osteoblasts, chondrocytes initiate a dedifferentiation process, characterized by a decrease of sox-9 and COL2 gene expression, and initialize hypertrophic differentiation as indicated by an increase of OSF-1 expression and a decrease of PTHrP gene expression. These findings suggest that OA osteoblasts could initialize chondrocyte phenotype shift occurring in OA cartilage.