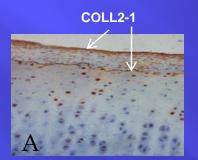
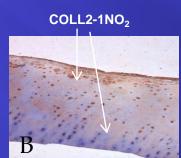
FOLLOW-UP OF COLL2-1, COLL2-1NO₂ AND MYELOPEROXYDASE IN DOGS AFTER TRANSECTION OF THE CRUCIATE LIGAMENT OF THE KNEE

Y Henrotin¹, JP Pelletier², J Martel-Pelletier², J Caron², C Boileau², A Bosseloir³, Ph Msika⁴, B Guillou⁴, M Deberg¹

Bone and Cartilage Research Unit, University of Liège, Sart-Tilman, 4000 Liège, Belgium² Osteoarthritis Research Unit, University of Montreal Hospital Centre, Notre-Dame Hospital, Montreal, Quebec H2L 4M1 Canada ³Zentech, Liège Science Park, 4031 Angleur, Belgium Expanscience, 92419 Courbevoie, France.

PURPOSE

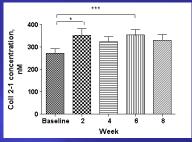

To determine the profile of Coll2-1, Coll2-1NO₂ and myeloperoxydase (MPO) serum concentrations in experimental knee OA induced in the dog by transection of the anterior cruciate ligament.

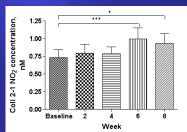

METHODS

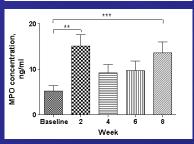
Surgical transection of the ACL of the right knee was performed on 16 adult crossbred dogs. The dogs were sacrificed 8 weeks after the surgical procedure. Coll2-1NO₂ and MPO were measured by specific immunoassays in 16 dogs at baseline and every 2 weeks during the 8 weeks. The results were expressed as median (range). The Friedman test estimated the variation for each biomarker every 2 weeks during the 8 weeks. After 8 weeks, we have calculated the microscopic and the macroscopic scores and have realized immunohistochemistry with antibodies directed against markers of cartilage degradation, Coll2-1 and Coll2-1NO2.

1. IMMUNOSTAININGS WITH D3 AND D37, THE ANTISERUM RECOGNIZING COLL2-1 AND COLL2-1NO₂, RESPECTIVELY.

D3 antibodies (Coll2-1) labeled chondrocytes and the extracellular matrix (A). An intense dark brown labeling was observed in the superficial layer of the fibrocartilage-like. With D37 antibodies (Coll2-1NO₂) (B), we obtained in addition an intense staining of the chondrocytes and of the extracellular matrix of intermediate layer.




3. MACROSCOPIC AND MICROSCOPIC SCORES


The global macroscopic score correlated positively with the 8-week changes of Coll2-1(r=0.57, p=0.02). No similar correlations were found for Coll2-1NO2 and MPO. Finally, there was a positive correlation between the 4-week changes of Coll2-1 and Coll2-1NO2 and the microscopic score of cartilage lesion severity (condyles; Coll2-1: r=0.56, p= 0.025 and Coll2-1NO2: r=0.52, p= 0.049). No similar correlations were found for MPO.

RESULTS

2. BIOMARKERS MEASUREMENTS

After the transection of the ACL, the concentration of the 3 biomarkers increased significantly (Friedman test: Coll2-1, Coll2-1NO2 and MPO: p<0.001). The concentrations of Coll2-1 and MPO were significantly increased at week 2 compared to baseline [Coll2-1 baseline: 281.57 (131.02-384.67) nM vs Coll2-1 week 2: 345.52 (181.15-589.25) nM and MPO baseline: 5.16 (<0.4-14.7) ng/ml vs MPO week 2: 14.54 (3.28-31.50) ng/ml] and remained stable until week 8 [Coll2-1 week 8:318.89 (117.95-492.28) nM and MPO week 8: 11.55 (2.87-42.94) ng/ml]. The Coll2-1NO2 concentration increased significantly at weeks 6 and 8 compared to baseline [Coll2-1NO₂ baseline: 0.54 (0.29-1.48) nM vs Coll2-1NO₂ week 6: 0.64 (0.40-1.9) nM vs week 8: 0.61 (0.37-1.79) nM].

CONCLUSIONS

These findings suggest that Coll2-1 is a relevant marker for the detection of early structural changes in OA dogs. Interestingly, MPO and Coll2-1NO₂ are increased in OA dogs indicating that an oxidative stress occurs in this OA model.